Non-human primate and rodent embryonic stem cells are differentially sensitive to embryotoxic compounds

نویسندگان

  • Lauren Walker
  • Laura Baumgartner
  • Kevin C. Keller
  • Julia Ast
  • Susanne Trettner
  • Nicole I. zur Nieden
چکیده

Many industrial chemicals and their respective by-products need to be comprehensively evaluated for toxicity using reliable and efficient assays. In terms of teratogenicity evaluations, the murine-based embryonic stem cell test (EST) offers a promising solution to screen for multiple tissue endpoints. However, use of a mouse model in the EST can yield only a limited understanding of human development, anatomy, and physiology. Non-human primate or human in vitro models have been suggested to be a pharmacologically and pathophysiologically desirable alternative to murine in vitro models. Here, we comparatively evaluated the sensitivity of embryonic stem cells (ESCs) of a non-human primate to skeletal teratogens with mouse ESCs hypothesizing that inclusion of non-human primate cells in in vitro tests would increase the reliability of safety predictions for humans. First, osteogenic capacity was compared between ESCs from the mouse and a New World monkey, the common marmoset. Then, cells were treated with compounds that have been previously reported to induce bone teratogenicity. Calcification and MTT assays evaluated effects on osteogenesis and cell viability, respectively. Our data indicated that marmoset ESCs responded differently than mouse ESCs in such embryotoxicity screens with no obvious dependency on chemical or compound classes and thus suggest that embryotoxicity screening results could be affected by species-driven response variation. In addition, ESCs derived from rhesus monkey, an Old World monkey, and phylogenetically closer to humans than the marmoset, were observed to respond differently to test compounds than marmoset ESCs. Together these results indicate that there are significant differences in the responses of non-human primate and mouse ESC to embryotoxic agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Validated Embryionic Stem Cell Test to Predict Embryotoxicityinvitro

Backgrounds: A straight-forward way to identify whether a drug or environmental chemical can be harmful to unborn baby is to evaluate its effect on laboratory animals. All invivo methods need large number of animal and are therefore time consuming and expensive. However, the thousands of chemicals in need of testing, to reduce the spending of live animals, an assortment of in vitro assays has ...

متن کامل

P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells

Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...

متن کامل

Embryotoxicity estimation of commonly used compounds with embryonic stem cell test

The embryonic stem cell test (EST), an alternative model to animal studies, is a reliable and scientifically validated in vitro system for testing embryotoxicity. In contrast to most in vivo animal tests, two permanent cell lines, murine fibroblasts (BALB/c‑3T3 cells) and murine embryonic stem cells (mES‑D3 cells), are used in EST instead of animals in standard tests of toxicity. The embryotoxi...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015